Светодиодные прожекторы – универсальные мощные источники света. Подробно о выборе светодиодных прожекторов Как мощный источник света в прожекторах применяется

  • Дата: 05.08.2023

Уличное освещение играет ничуть не меньшую роль, чем внутренне, поэтому к выбору светильников для наружной подсветки нужно подойти со всей ответственностью.
Основными параметрами, которыми нужно руководствоваться при подборе прожектора среди моря предложений является: экономичность, яркость и адекватность цветопередачи, герметичность и срок службы. Конечно, у каждого покупателя свои потребности, давайте разбираться, как выбрать наиболее подходящую модель.

Экономичные

Прежде всего, конечно, нужно ориентироваться на затратность прожектора. Ведь для уличного освещения обычно используются достаточно мощные лампы, которые потребляют за ночь большое количество электроэнергии.
Самыми экономными на данный момент являются светодиодные, индукционные и люминесцентные лампы.

Разновидности прожекторов

Однако последние два вида ламп скорее подходят для подсветки крытых площадок возле дома, так как они плохо переносят перемену влажности и температур.
Это одни из самых дорогих систем наружного освещения для частного пользования (подсветки участка вокруг дома, дачи, дорожек и т.п.). Но зато все три обеспечивают минимальное потребление при отличной светоотдаче, и обычно уже в течение полутора-двух лет полностью окупаются (чем дольше они работают, тем сильнее экономический эффект).

Если Вы хотите выбрать не только яркий экономный светильник, но и долговечный — рекомендуем обратить внимание на светодиодные и индукционные модели. По разным оценкам их ресурс очень велик — от 30 до 70 тысяч часов безотказной работы.

Люминесцентные в этом смысле проигрывают в разы – они способны проработать до 12 тыс. часов, причём по мере выгорания люминофора они заметно тускнеют. Кроме того они очень чувствительны к скачкам напряжения и частым включениям. Из-за этого их не рекомендуется подключать к датчикам движения, т.к. в противном случае устройство исчерпает ресурс гораздо раньше заявленного срока.

Яркие

Очень яркий мощный свет дают металлогалогенные и галогенные лампы, хотя параметры потребления у них гораздо превышают предшественников.

Галогенный прожектор

Галогенные прожекторы создают яркий, приятный для восприятия свет в тёплом спектре — он максимально походит на солнечный. При условии их использования минимально искажается цветопередача – предметы выглядят так же, как и в дневное время. Они достаточно надёжны, поддерживают диммирование, стойко переносят температурные колебания.
Однако длительность их «жизни» небольшая – 2000-8000 часов, хоть это почти вдвое превышает срок службы ламп накаливания.
Металлогалогенные прожекторы – это мощные источники света, идеально подходящие для подсветки больших территорий. Они излучают поток в нейтральном белом спектре, что также обеспечивает отличную цветопередачу (с индексом более 90).
В отличие от галогенных моделей они являются источниками достаточного сильного ультрафиолетового излучения, для растений в саду (или в теплицах) это полезно, для человека – не очень. Именно поэтому такие типы ламп используются преимущественно на открытых площадках, или на закрытых объектах, где человек не находится постоянно.

Натриевый прожектор

Они имеют очень широкий спектр цветовых температур — от 3 до 20 тысяч. Но на протяжении срока службы температура таких ламп может сильно меняться, что усложняет проектные расчёты. Также металлогалогенкам требуется продолжительное время для запуска и выхода на номинальные параметры свечения.

Сильный и мощный световой поток обеспечивают натриевые светильники. Они обладают одними из самых высоких параметров светоотдачи – достигает рекордных 150-200 люмен на Ватт.

Такие светильники генерируют характерный охристо-жёлтый спектр излучения. Из-за этого цветопередача заметно искажается. Впрочем, благодаря этому эффекту можно интересно обыграть архитектурные особенности дома или примыкающей к нему территории.
В общем-то, если Вы не предъявляете особых требований к цветопередаче, такие прожекторы станут неплохим решением, так как львиную долю затрачиваемой энергии они трансформируют в свет. Кроме того они являются «долгожителями» — выдерживают до 30000 часов свечения без существенной потери качества.

Защищённые

Защищенный прожектор

Ещё один крайне важный критерий отбора уличного прожектора – степень его герметичности. Зачастую прямо на само устройство наносится специальная маркировка – IP с двумя цифрами. Чем они выше, тем более защищённым (от воздействия агрессивных сред) является устройство. Первая цифра характеризует степень защищённости от проникновения частиц пыли под корпус, а вторая – от попадания воды (конденсата).
Ниже, в качестве примера, приведена маркировка светодиодного прожектора.

В таких моделях все стыки уплотнены защитными прокладками и герметиками. Только обращайте внимание на материал и размеры задней части светильника. Она отвечает за отведение тепла и должна быть достаточно объёмной, чтобы эффективно охлаждать герметично закрытый корпус. Лучше всего выбирать устройства с задней панелью из тонкого металла, он обеспечивает ускоренный теплообмен.
Для систем наружного освещения также предусмотрена и дополнительная антивандальная защита, снижающая риск механических повреждений, вибрации и т.п. Нередко корпус уличных светильников выполняется из более толстого металла, для защиты светящего элемента используется противоударное стекло и металлические решётки-накладки, соединительные кабели укладываются в дополнительный слой особо прочной изоляции.
Понятно, что такое устройство стоит дороже, но для мест общего пользования изначально лучше выбирать модели с высоким запасом прочности.

С датчиком

Для освещения участков, редко посещаемых ночью (например, удалённые участки сада, дачи) лучше всего выбрать прожектор со встроенным датчиком движения. Конечно, обойдётся такое устройство на порядок дороже, но зато оно будет обеспечивать заметную экономию, так как лампа будет загораться только тогда, когда кто-то проходит поблизости зоны покрытия.

Прожектор с датчиком

В зависимости от конструкции и мощности блоки датчиков располагаются либо в корпусе светильника, либо снаружи. Как вариант, можно просто купить отдельный датчик и подключить к нему сразу несколько светильников, чтобы они загорались одновременно с нескольких сторон.
Только обращаем ваше внимание на то, что не все модели прожекторов совместимы с датчиками. Кроме того, необходимо выбрать такую модель датчика, которая будет работать с определённым типом ламп, используемых в прожекторе. Например, датчик для ламп накаливания не подходит для светодиодных светильников и наоборот.

Автономные

Автономный прожектор

Ввиду чрезвычайно низкого потребления энергии светодиодные прожекторы открывают новые возможности использования бесплатной солнечной энергии для освещения дачи или придомовой территории.
Ниже представлена современная универсальная модель светодиодного прожектора. Он оборудован встроенным датчиком (блок в самом низу) и аккумулятором, набирающим заряд от солнечной энергии.

Настоятельно рекомендуем приобретать подобную модель. Она светит ярко, потребляет мало, плюс датчик эффективно регулирует длительность свечения, да и сама энергия обходится бесплатно.
Такие светильники потенциально имеют очень длительный ресурс бесперебойной работы, обещается, что они смогут проработать более десяти лет – впечатляет! При этом они практически не нуждаются в обслуживании, поскольку полностью автономны. Под них не нужно прокладывать силовые кабели, так как из-за наличия собственной батареи они могут устанавливаться в любом уголке придомовой территории или дачи.
Чтобы максимально повысить эффективность батареи – устанавливайте аккумуляторный модуль на самой солнечной стороне. В этом смысле очень удобно, что батарея не прикреплена намертво к светильнику – её можно как угодно поворачивать и располагать поближе к солнцу. Время от времени необходимо протирать поверхность панели, так как из-за плотного слоя пыли или грязи большая часть лучей не доходит до цели.
Единственным недостатком таких систем пока остаётся небольшая длительность освещения. Заряда аккумуляторов обычно хватает от 2 до 7 часов непрерывного свечения, после этого лампа тухнет.

Как видим, благодаря стремительному прогрессу осветительных технологий выбрать есть из чего. Каждая модель имеет свои преимущества и недостатки. Для уличного освещения наиболее подходящими будут светодиодные прожекторы. Они и светят ярко, и потребляют мало, и не боятся переменчивых погодных условий.


Секреты выбора галогенных люстр с пультом управления
Особенности металлогалогенного светильника — как подключить

Искусственные источники света — технические устройства различной конструкции, преобразовывающие энергию в световое излучение. В источниках света используется в основном электроэнергия, но так же иногда применяется химическая энергия и другие способы генерации света (например, триболюминесценция, радиолюминесценция, биолюминесценция и др.).

Источники света, наиболее часто применяемые для искусственного освещения, делят на три группы - газоразрядные лампы, лампы накаливания и светодиоды. Лампы накаливания относятся к источникам света теплового излучения. Видимое излучение в них получается в результате нагрева электрическим током вольфрамовой нити. В газоразрядных лампах излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явлений люминесценции, которое невидимое ультрафиолетовое излучение преобразует в видимый свет.

В системах производственного освещения предпочтение отдается газоразрядным лампам. Использование ламп накаливания допускается в случае невозможности или экономической нецелесообразности применения газоразрядных.

Основные характеристики источников света:

· номинальное напряжение питающей сети U, B;

· электрическая мощность W, Вт;

· световой поток Ф, лм;

· световая отдача (отношение светового потока лампы к ее мощности) лм/Вт;

· срок службы t, ч;

· Цветовая температура Tc, К.

Лампа накаливания - источник света, в котором преобразование электрической энергии в световую происходит в результате накаливания электрическим током тугоплавкого проводника (вольфрамовой нити). Эти приборы предназначаются для бытового, местного и специального освещения. Последние, как правило, отличаются внешним видом - цветом и формой колбы. Коэффициент полезного действия (КПД) ламп накаливания составляет около 5-10%, такая доля потребляемой электроэнергии преобразуется в видимый свет, а основная ее часть превращается в тепло. Любые лампы накаливания состоят из одинаковых основных элементов. Но их размеры, форма и размещение могут сильно отличаться, поэтому различные конструкции не похожи друг на друга и имеют разные характеристики.

Существуют лампы, колбы которых наполнены криптоном или аргоном. Криптоновые обычно имеют форму "грибка". Они меньше по размеру, но обеспечивают больший (примерно на 10%) световой поток по сравнению с аргоновыми. Лампы с шаровой колбой предназначены для светильников, служащих декоративными элементами; с колбой в форме трубки - для подсветки зеркал в стенных шкафах, ванных комнатах и т. д. Лампы накаливания имеют световую отдачу от 7 до 17 лм/Вт и срок службы около 1000 часов. Они относятся к источникам света с теплой тональностью, поэтому создают погрешности при передаче сине-голубых, желтых и красных тонов. В интерьере, где требования к цветопередаче достаточно высоки, лучше использовать другие типы ламп. Также не рекомендуется применять лампы накаливания для освещения больших площадей и для создания освещенности, превышающей уровень 1000 Лк, так как при этом выделяется много тепла и помещение "перегревается".

Несмотря на эти ограничения, такие приборы все еще остаются классическим и излюбленным источникам света.

Лампы накаливания со временем теряют яркость, и происходит это по простой причине: испаряющийся с нити накаливания вольфрам осаждается в виде темного налета на внутренних стенках колбы. Современные галогенные лампы не имеют этого недостатка благодаря добавлению в газ-наполнитель галогенных элементов (йода или брома).

Лампы бывают двух форм: трубчатые - c длинной спиралью, расположенной по оси кварцевой трубки, и капсульные - с компактным телом накала.

Цоколи малогабаритных бытовых галогенных ламп могут быть резьбовыми (тип Е), которые подходят к обычным патронам, и штифтовые (тип G), которые требуют патронов другого типа.

Световая отдача галогенных ламп составляет 14-30 лм/Вт. Они относятся к источникам с теплой тональностью, но спектр их излучения ближе к спектру белого света, чем у ламп накаливания. Благодаря этому прекрасно "передаются" цвета мебели и интерьера в теплой и нейтральной гамме, а также цвет лица человека.

Применяются повсюду. Лампы, имеющие цилиндрическую или свечеобразную колбу и рассчитанные на сетевое напряжение 220В, можно использовать вместо обычных ламп накаливания. Зеркальные лампы, рассчитанные на низкое напряжение, практически незаменимы при акцентированном освещении картин, а также жилых помещений.

— разрядные лампы низкого давления — представляют собой цилиндрическую трубку с электродами, в которую закачаны пары ртути. Эти лампы значительно меньше расходуют электроэнергию, чем лампы накаливания или даже галогенные лампы, а служат намного дольше (срок службы до 20 000 часов). Благодаря экономичности и долговечности эти лампы стали самыми распространенными источниками света. В странах с мягким климатом люминесцентные лампы широко применяются в наружном освещении городов. В холодных районах их распространению мешает падение светового потока при низких температурах. Принцип их действия основан на свечении люминофора, нанесенного на стенки колбы. Электрическое поле между электродами лампы заставляет пары ртути выделять невидимое ультрафиолетовое излучение, а люминофор преобразует это излучение в видимый свет. Подбирая сорт люминофора, можно изменять цветовую окраску испускаемого света.

Принцип действия разрядных ламп высокого давления — свечение наполнителя в разрядной трубке под действием дуговых электрических разрядов.

Два основных разряда высокого давления, применяемых в лампах — ртутный и натриевый. Оба дают достаточно узкополосное излучение: ртутный — в голубой области спектра, натрий — в желтой, поэтому цветопередача ртутных (Ra=40-60) и особенно натриевых ламп (Ra=20-40) оставляет желать лучшего. Добавление внутрь разрядной трубки ртутной лампы галогенидов различных металлов позволило создать новый класс источников света — , отличающиеся очень широким спектром излучения и прекрасными параметрами: высокая световая отдача (до 100 Лм/Вт), хорошая и отличная цветопередача Ra=80-98, широкий диапазон цветовых температур от 3000 К до 20000К, средний срок службы около 15 000 часов. МГЛ успешно применяются в архитектурном, ландшафтном, техническом и спортивном освещении. Еще более широко применяются . На сегодняшний день это один самых экономичных источников света благодаря высокой светоотдаче (до 150 Лм/Вт), большому сроку службы и демократичной цене. Огромное количество натриевых ламп используется для освещения автомобильных дорог. В Москве натриевые лампы часто из экономии используются для освещения пешеходных пространств, что не всегда уместно из-за проблем с цветопередачей.

Светодиод — это полупроводниковый прибор, преобразующий электрический ток в световое излучение. Специально выращенные кристаллы дают минимальное потребление электроэнергии. Великолепные характеристики светодиодов (световая отдача до 120 Лм/Вт, цветопередача Ra=80-85, срок службы до 100 000 часов) уже обеспечили лидерство в светосигнальной аппаратуре, автомобильной и авиационной технике.

Светодиоды применяются в качестве индикаторов (индикатор включения на панели прибора, буквенно-цифровое табло). В больших уличных экранах и в бегущих строках применяется массив (кластер) светодиодов. Мощные светодиоды используются как источник света в фонарях и прожекторах. Так же они применяются в качестве подсветки жидкокристаллических экранов. Последние поколения этих источников света можно встретить в архитектурном и интерьерном освещении, а так же в бытовом и коммерческом.

Преимущества:

· Высокий КПД.

· Высокая механическая прочность, вибростойкость (отсутствие спирали и иных чувствительных составляющих).

· Длительный срок службы.

· Специфический спектральный состав излучения. Спектр довольно узкий. Для нужд индикации и передачи данных это — достоинство, но для освещения это недостаток. Более узкий спектр имеет только лазер.

· Малый угол излучения — также может быть как достоинством, так и недостатком.

· Безопасность — не требуются высокие напряжения.

· Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.

· Отсутствие ядовитых составляющих (ртуть и др.) и, следовательно, лёгкость утилизации.

· Недостаток - высокая цена.

· Срок службы: среднее время полной выработки для светодиодов составляет 100000 часов, это в 100 раз больше ресурса лампочки накаливания.

Статические световые приборы, важнейшие элементы визуального оформления развлекательных мероприятий, где требуется расставить яркие акценты, привлечь внимание к участникам шоу, создать ту или иную атмосферу и настроение в зале, на сцене или целом помещении. Направленный луч света выделяет главные детали, оставляя в тени второстепенные, и позволяет фактически управлять действием, происходящим на сцене. От того, насколько удачно выставлен свет, зависит общее впечатление зрителей от увиденного и, в итоге, успех мероприятия в целом.

Для правильного выбора прожекторов нужно учитывать множество параметров: их конструкцию, габариты, функционал, технические характеристики, преимущества и недостатки, которые определяют сферу использования тех или иных моделей.

Спектр использования прожекторов очень широк. Они нужны для промышленного, уличного, панорамного, линейного, матричного освещения в хозяйственных, бытовых, развлекательных, рекламных, художественных целях. Почему один и тот же прибор не может быть универсальным и использоваться везде? Попробуем разобраться в этом вопросе.

Конструкция прожекторов

В качестве световых приборов прожекторы используются уже очень давно. Хотя опыт их использования в сфере развлечений, конечно, намного меньше, чем, например, в корабельном деле.

Конструкция прибора достаточно проста, но одновременно - эффективна. Прожектор состоит из корпуса из металла или пластика, с круглым либо четырехугольным сечением, внутри которого расположены источники света, зеркальный отражатель и блок питания. В качестве источников света современных моделях используют: светодиоды, галогеновые, ксеноновые или ртутные лампы. Зеркальный отражатель вместе с передней линзой образует единую систему, которая позволяет фокусировать и направлять луч прожектора в нужную сторону. Дополнительно контролировать рассеяние света позволяют откидные кашетирующие шторки (к большинству моделей продаются как аксессуар). С помощью замены фильтра можно получить различные световые или цветовые эффекты, поэтому рамка для его крепления - еще одна существенная деталь.

На корпусе прожектора обязательно расположены фиксаторы - крепления, с помощью которых он будет установлен на штатив или какую-либо поверхность, а иногда еще и ручка для наклона прожектора и простого механического управления световым потоком.

Поскольку на современных мероприятиях управление светом происходит с помощью пультов, дающих команды от оператора всем приборам по мере необходимости, то важнейший компонент профессиональных прожекторов - электроника. Именно электронная «начинка» определяет функциональность конкретного прибора, его качество, а значит и стоимость, и сферу применения.

Поскольку главная задача прожектора - выдавать световой поток с нужными параметрами, то стоит подробнее разобраться, какие источники света могут использоваться в конструкции прибора.

Источники света в прожекторах

Для современных осветительных приборов в качестве источников света используются светодиоды или лампы различного типа.

Светодиодные прожекторы используются повсеместно и обладают множеством преимуществ:

универсальность и многозадачность: светодиоды можно размещать внутри одного прожектора рядами различной формы во множестве комбинаций, как по количеству, так и по цвету, меняя таким образом мощность, габариты и другие параметры приборов;

длительный срок эксплуатации в целом и возможность долгой непрерывной работы до 50 000 часов;

четкая направленность светового потока, минимальные потери за счет рассеивания;

энергосбережение: светодиоды дают высокую яркость, но нагреваются при этом минимально, а значит не тратят электричество впустую и не повышают температуру в помещении, что особенно актуально для камерных замкнутых пространств;

снижение нагрузки на электросеть, которая и так интенсивно работает из-за подключения разнообразного оборудования - еще одно следствие низкого энергопотребления. Очень важный плюс, если мероприятие проводится в здании со старой или недостаточно мощной проводкой;

пожаробезопасность также обусловлена незначительным нагревом прибора в процессе работы;

компактность при высокой мощности светового потока: можно ярко подсветить нужные объекты, не устанавливая громоздких конструкций в ограниченном пространстве;

прочность конструкции: светодиоды надежно закреплены внутри прожектора, а сами корпуса изготавливают из высокотехнологичных полимерных материалов, так что они вполне способны выдержать даже падение с небольшой высоты;

пригодность к эксплуатации в широком температурном диапазоне, устойчивость к резкой смене погодных условий: важнейшее качество для мероприятия на открытом воздухе;

отсутствие вредных элементов (ртути, газов) в конструкции: если прожектор все-таки разобьется, то никакого загрязнения воздуха не произойдет, да и утилизировать его будет намного проще.

Главный недостаток светодиодных прожекторов - это цена, что вполне объяснимо при таком количестве преимуществ. Хотя LED-технологии очень быстро развиваются и современные источники света постоянно дешевеют, так что важность ценового фактора постепенно снижается. К тому же для профессиональных приборов, используемых активно и постоянно, стоимость значит гораздо меньше, чем надежность, качество, яркость и удобство в эксплуатации.

Ламповые прожекторы - более традиционные осветительные приборы, которые, тем не менее имеют свои преимущества, выпускаются ведущими мировыми компаниями, модернизируются и активно применяются для визуального оформления различных мероприятий. В качестве источников света внутри них устанавливаются различные типы ламп: ксеноновые, галогенные или металлогалогенные, ртутные, плазменные.

Общие преимущества для всех типов ламповых прожекторов: простота в эксплуатации и низкая (по сравнению со светодиодными) цена. Все остальные зависят уже от типа лампы.

Галогенные: наиболее востребованные прожекторы. Они долговечны, экономичны (самые энергосберегающие в группе ламповых), выдерживают скачки напряжения, дают насыщенный яркий световой поток, усиленный за счет фокусирующей линзы. Галогенные лампы работают при температуре от -45 до +50◦С и стандартном напряжении 220 В, то есть не требуют установки трансформаторов. Диапазон мощности - от 60 до 3000 Вт. Недостаток связан с конструкцией лампы, внутри которой находится небезопасный газ.

Металлогалогенные: используют разновидность галогенных ламп, но для коррекции светового излучения к ртутному газу добавляют соединения металлов. У таких прожекторов еще меньше потребление энергии и выше светоотдача. Свет имеет максимально приближенную к естественному температуру, что способствует оптимальной цветопередаче изображения. Существенный недостаток прожекторов с такой лампой - длительное время на прогрев перед достижением заявленной мощности (до 10 минут) и пульсации светового потока.

Ртутные: прожекторы с ртутными газоразрядными лампами, которые используются для постоянного освещения крупных объектов. Они дают равномерный и яркий световой поток, и способны работать без перерыва тысячи часов, но на развлекательных мероприятиях уступают место более универсальным приборам.

Плазменные: пока еще мало распространенные лампы, в которых свечение возникает при взаимодействии с током частиц серы и газа аргона. Они дают близкий к естественному спектр излучения и оптимально подходят для больших помещений с многометровой высотой потолков или открытых площадок. Важные преимущества плазменных источников света: экологичность и минимальное время запуска (всего через 12 секунд они выдают 80% номинальной мощности).

Ксеноновые: внутри лампы светится инертный газ ксенон, а прожекторы используются в бытовых целях, в качестве фонарей и яркой, но не постоянной подсветки.

Самый современный и распространенный в настоящее время тип лампового прожектора - так называемый PAR (parabolic aluminized reflector) или парблайзер. Линзы у такого прожектора нет поэтому световой поток нельзя направить и сфокусировать в нужном направлении, а галогеновая лампа находится внутри алюминиевого корпуса с зеркальным отражателем. Он применяется там, где нужно установить статичный яркий не узконаправленный (заливочный) свет. С помощью фильтров легко изменить его цвет. Кстати, светодиоды тоже могут быть источником света в PAR- прожекторе. Тогда конструкция получает все преимущества светодиодов, а от первоначального смысла названия PAR остается только функция рассеянного света. Яркие примеры таких современных устройств: LED PAR 64 ROSS RGBW и CAMEO LED PAR 64. Как и в классических галогеновых PAR-прожекторах цифрами в наименовании модели обозначается диаметр корпуса в дюймах.

Из-за своих более крупных размеров и ограниченности в управлении светом, ламповые прожекторы используются в большей степени на уличных мероприятиях, концертах или шоу, где нужна сплошная заливка светом большого пространства или для создания особых визуальных эффектов в кинематографии.

Другие технические особенности прожекторов

Какие еще технические характеристики прожекторов можно выделить, кроме используемых источников света?

Мощность : безусловно, зависит от количества и типа лампы. Она же определяет и яркость светового потока, но с разной степенью эффективности. Для сравнения вот стандартные параметры для разных источников света

При выборе типа эффективных источников света не стоит забывать, что их количество тоже имеет значение. Светодиоды очень компактны и совсем не греются, а значит, при невысокой мощности каждого, их можно разместить большой группой, получив наилучшее соотношение цены и уровня освещенности. Большие светодиодные прожекторы именно по такому принципу и конструируют.

Конструктивные особенности : прожекторы могут отличать формой и габаритами, являться точечными или линейными источниками света, иметь крепления для сборки конструкции из нескольких приборов одного и того же типа (образуя, опять же, линейную структуру, но уже не в едином корпусе и т.д.

Пушки и стробоскопы

Разновидности прожекторов как статических световых приборов - это стробоскопы и пушки.

Пушки дают мощный световой поток направленного действия и могут следить за движущимся объектом, например, на сцене или подиуме, либо создавать интересные визуальные эффекты на дискотеках или шоу (проецировать изображение, заданное с помощью фильтра).

Стробоскопы - прожекторы увеличенной мощности, которые светят не постоянно, а генерируют вспышки с заданной частотой. Человеческий глаз воспринимает их как движущееся изображение, так что в результате возникает оригинальный яркий и запоминающийся визуальный эффект.

На что обратить внимание при выборе прожекторов для вашего мероприятия

Очевидно, что чем больше характеристик учтено, тем более точным будет выбор устройства и, следовательно, эффект от его использования. Тем не менее в условиях ограниченного времени, бюджета или просто при нежелании глубоко вникать в технически детали, можно сосредоточиться на самом главном. Сделать это не сложно, если сначала ответить на основные вопросы:

  1. На каком мероприятии нужны прожекторы и где оно будет проводиться - в помещении или на улице?
  2. Какой визуальный эффект требуется получить с их помощью?
  3. Как долго планируется использовать прожектор?
  4. Каковы технические возможности работы на конкретной площадке, планируется ли управление со световых пультов или ручное?

Примерно сориентироваться поможет следующая таблица:

Прожектор – это световой электроприбор, обеспечивающий излучение светового потока высокой концентрации внутри малого телесного угла.

Виды и классификация
уличных светодиодных светильников и прожекторов

По назначению прожекторы бывают:

  • Дальнего действия (применяются для освещения объектов, расположенных на большом расстоянии).
  • Заливающего света (для освещения больших площадей, например стадионов, театральных площадок).
  • Сигнальные (для передачи информации).
  • Акцентные (для локального освещения объектов).

В качестве источников света в уличные светильники и прожекторы устанавливают:

  • Светодиоды.
  • Светодиодные матрицы.
  • Металлогалогенные лампы.
  • Ртутные лампы.
  • Ксеноновые лампы.

По классу защиты (IP) от попадания в корпус уличного светильника или прожектора пыли и воды они выпускаются для работы:

  • В закрытых помещениях (IP40).
  • На улице под открытым небом (IP64).
  • Под водой (IP68).

В современных уличных светильниках и прожекторах вместо ламп устанавливают светодиоды или светодиодные матрицы, так как они по всем техническим характеристикам многократно превосходят лампы любого типа. Главным преимуществом светодиодных источников света являются низкая потребляемая мощность и большой срок службы. Благодаря этим показателям, несмотря на более высокую закупочную цену уличных светодиодных осветительных приборов, эксплуатационные затраты получаются низкими, что обеспечивает большую экономию денег в долгосрочной перспективе.

Светодиоды и светодиодные матрицы из-за конструктивных особенностей имеют узкий угол излучения светового потока (около 120°), в результате чего однозначно классифицировать световые приборы стало сложно. Если в светодиодном светильнике светодиоды или светодиодные матрицы установлены на одной плоскости, то он уже по определению является Прожектором.

По предназначению светодиодные прожекторы бывают :

  • Ландшафтные (применяются для подсветки зеленых насаждений в парках или на дачных участках).
  • Архитектурные (устанавливаются для декоративной подсветки зданий, сооружений или памятников).
  • Осветительные (служат для освещения дворовых территорий, открытых площадок, тротуаров и автодорог).

В качестве светодиодного источника света в уличных светильниках и прожекторах применяются :

  • Точечные светодиоды.
  • Светодиодные матрицы.

На фотографии представлена линейка светодиодных уличных светильников типа ДиУС, изготовленных с применением светодиодов мощностью 1 ватт. Эти уличные светильники комплектуются драйвером, представляющим собой герметичный самостоятельный блок, который подключается к светодиодному блоку с помощью разъема. Закреплен драйвер на корпусе светильника с помощью винтов и в случае необходимости его замены для ремонта легко отсоединяется от печатной платы со светодиодами.

Уличные светильники с точечными светодиодами легко ремонтировать, так как есть возможность оперативно заменить драйвер, а в случае выхода из строя одного из светодиодов его можно заменить исправным самостоятельно, как при ремонте светодиодной лампочки .


На этой фотографии показан классический светодиодный уличный прожектор, в котором в качестве источника излучения света применена светодиодная матрица. Обычно мощность светодиодной матрицы не превышает 50 ватт, поэтому в более мощных матричных светильниках устанавливают несколько светодиодных матриц. Драйвер у этого вида светильников установлен внутри его корпуса, что требует в случае отказа драйвера демонтировать светильник с места установки.


Светодиодная матрица представляет собой подложку, на которой смонтировано множество светодиодных кристаллов и в случае выхода из строя одного из них вся матрица приходит в негодность. На фотографии, сгоревшая от перегрева светодиодная матрица из светодиодного прожектора, который мне пришлось ремонтировать . На ней хорошо видны квадратики, в которых размещены светодиодные кристаллы. Стоит светодиодная матрица дорого, поэтому с точки зрения затрат на ремонт уличные светильники с точечными светодиодами приобретать экономически выгоднее.

На фотографии представлен светодиодный прожектор, в котором в качестве излучателя света использованы smd светодиоды . Использование в прожекторах светодиодов вместо светодиодной матрицы позволяет заменять только перегоревший светодиод, а не матрицу целиком, что существенно снижает эксплуатационные затраты.

Устройство уличного светодиодного матричного светильника

Внешний вид светодиодного прожектора со стороны установки светодиодной матрицы показан на фотографии выше. Если открутить четыре винта и снять защитную крышку с оптическим стеклом и отражающим рефлектором, то появится доступ к светодиодной матрице.


Как видно из фотографии прожектор представляет собой литой из алюминиевого сплава корпус, который одновременно служит для отвода тепла от матрицы. Матрица закреплена к корпусу с помощью двух винтов, хотя конструкция корпуса и матрицы предусматривает крепление с помощью четырех винтов. Похоже, производитель сэкономил на винтах. Отсутствие зазора между корпусом прожектора и подложкой матрицы в совокупности с теплопроводящей пастой обеспечивает хороший отвод тепла от кристаллов и как следствие, надежную работу прожектора в целом.


А так выглядит прожектор с тыльной стороны. Сетевой провод, для герметизации обжатый специальной гайкой, входит в крышку, закрепленную четырьмя винтами через силиконовую прокладку к корпусу прожектора. Для закрепления прожектора на столбе или стене предусмотрена вращающаяся скоба. На корпусе прожектора сделаны вертикальные ребра, служащие для более эффективного отвода выделяемого матрицей тепла.


Под задней крышкой прожектора находится драйвер, преобразующий сетевое напряжение 220 В в напряжение со стабилизированным током, необходимое для работы светодиодной матрицы.

Как видите, устроен светодиодный прожектор совсем просто и состоит из корпуса, драйвера и светодиодной матрицы. Так же устроен и любой светодиодный уличный светильник и отличается только внешним видом и конструктивным исполнением.

Выбор уличного светодиодного светильника или прожектора

Для того чтобы правильно выбрать уличный светильник, который продолжительное время работал и эффективно освещал требуемую территорию, необходимо разбираться в его технических характеристиках и параметрах.

По классу защиты IP

Главной технической характеристикой, на которую в первую очередь следует обратить внимание при выборе любого уличного светильника, является класс его защиты от попадания в корпус твердых частиц и воды. Маркируются светодиодные светильники всеми производителями, по единому международному стандарту. Класс защиты в маркировке обозначается в соответствии с требованиями стандарта защиты электрооборудования от воздействия внешних факторов IEC-952.

Справочная таблица маркировки защиты светильников от воздействия внешних факторов
Порядковый № цифровой последовательности в маркировке Обозначение в маркировке Расшифровка обозначения
Класс защиты от воздействия внешних факторов IP Класс защиты в маркировке обозначается в соответствии с требованиями стандарта защиты электрооборудования от воздействия внешних факторов IEC-952
Первая цифра после IP, защита от проникновения твердых предметов
0 Нет защиты
1 От проникновения тел диаметром 50 мм и более
2 От проникновения тел диаметром 12 мм и более, длиной не более 80 мм
3 От проникновения тел диаметром 2,5 мм и более
4 От проникновения тел диаметром 1 мм и более
5 Допускается попадание пыли в количестве, недостаточном для нарушения работоспособности оборудования
6 Попадание пыли не допускается
Вторая цифра после IP, защита от попадания жидкости внутрь корпуса 0 Нет защиты
1 От вертикально падающих капель воды
2 От капель воды, падающих под углом 15°
3 От капель воды, падающих под углом 60°
4 От воды, разбрызгиваемой под любым углом
5 От струи воды, разбрызгиваемой под любым углом
6 От сильной струи воды (100 л/мин, 100 кПа)
7 От попадания воды при погружении на глубину до 15 см
8 От попадания воды при длительном погружении

Воспользовавшись данными таблицы легко определить, какой класс защиты от воздействия внешних факторов должен иметь светодиодных светильник и сделать правильный выбор. Например, при установке светильника на столбе под открытым небом в его корпус могут проникать твердые частицы в виде пыли и вода от дождевых осадков. Следовательно, необходимо выбрать уличный светильник с классом защиты не ниже IP64, где цифра 6 обозначает недопустимость попадания в корпус пыли, а 4 обозначает обеспечение защиты от воды, разбрызгиваемой под любым углом.

По освещенности на уровне покрытия

На следующем этапе выбора уличного светильника необходимо определить, исходя из объекта освещения, величину освещенности на освещаемой поверхности.

Освещенность поверхностей принято измерять в люксах, которые кратко обозначаются лк и измеряется с помощью прибора, который называется Люксметр . Для представления освещенности поверхностей в люксах (слово произошло от латинского слова lux, переводится на русский язык - свет), можно сравнить ее с освещенностью, которую обеспечивает полная луна в ясную погоду, это всего 0,2 лк. А прямые солнечные лучи создают на поверхности земли освещенность 100 000 лк. Для выполнения тонких работ, например ювелирных, достаточно освещенности 300 лк.

Нормы освещенности поверхностей регламентируются государственным документом: «Естественное и искусственное освещение» - СНиП 23-05-2010, которые являются актуализированной редакцией СНиП 23-05-95 (Строительные нормы и правила утверждены приказом Минрегиона России и введены в действие в 2011 г.). Для выбора уличного светильника вполне достаточно информации, приведенной в таблице ниже.

Требования СНиП 23-05-2010 к средней горизонтальной освещенности на уровне покрытия
Освещаемые объекты Средняя горизонтальная освещенность, лк
Главные пешеходные улицы, непроезжие части площадей категорий А и Б и предзаводские площади 10
Пешеходные улицы в пределах общественных центров 6
на других территориях 10
Тротуары, отделенные от проезжей части на улицах категорий А и Б 4
В 2*
Посадочные площадки общественного транспорта на улицах всех категорий 10
Пешеходные мостики 10
Пешеходные тоннели днем 100
вечером и ночью 50
Лестницы пешеходных тоннелей вечером и ночью 20
Пешеходные дорожки бульваров и скверов, примыкающих к улицам категорий А 6
Б 4
В 2
Территории микрорайонов
Проезды основные 4
второстепенные, в том числе тротуары-подъезды 2
Хозяйственные площадки и площадки при мусоросборниках 2
Детские площадки в местах расположения оборудования для подвижных игр 10
* Норма распространяется также на освещенность тротуаров, примыкающих к проезжей части улиц категорий Б и В с переходными и низшими типами покрытий

Из таблицы следует, что если будет обеспечена освещенность поверхности любой территории, за исключением пешеходных тоннелей и ведущих к ним лестниц, не менее 10 лк, то требования СНиП 23-05-2010 будут удовлетворены.

При выборе уровня освещенности поверхности следует учесть, что со временем происходит снижение яркости свечения светодиодов, и световой поток от светильника будет уменьшаться. Поэтому, чтобы гарантировать соответствие освещения поверхности требованиям СНиП на протяжении всего срока службы светильника следует выбирать светильник не менее, чем с двух кратным запасом по световому потоку. Например, если по таблице требуется средняя горизонтальная освещенность 10 лк, то для расчетов при выборе светильника нужно брать значение 20-30 лк.

Технические характеристики уличных светильников

После выбора класса защиты, которому должен соответствовать светильник и определения уровня освещенности, который нужно обеспечить на освещаемой поверхности можно переходить к выбору светодиодного светильника по остальных технических характеристикам.

Таблица технических характеристик уличных светодиодных светильников
Параметр Единица измерения Величина Комментарии
Диапазон рабочей температуры °С (градусы Цельсия) -60° ~ +40° Температура окружающей среды при которой светильник должен работать и соответствовать заявленным техническим характеристикам
Класс защиты Обозначается IP См. таблицу выше Определяет способность светильника сохранять работоспособность в условиях наличия пыли и воды
Диапазон напряжения питания В (вольт) 100-265 Диапазон изменения величины питающего напряжения, при котором светильник сохраняет работоспособность и обеспечивает заявленные производителем технические характеристики
Потребляемая мощность Вт (ватт) - Мощность, которую потребляет светильник во время работы от питающей сети
Мощность, потребляемая ЛЭД модулем Вт (ватт) - Мощность, которую потребляют светодиоды во время работы светильника
Световой поток лм,lm (люмен) Зависит от мощности Величина светового потока видимая глазом человека, который излучает светильник
Световая эффективность лм/Вт 80-100 Количество света, которое излучает светильник на один ватт потребляемой мощности. Чем величина больше, тем экономичнее светильник
Уровень освещенности от расстояния м-лк Зависит от мощности Величина освещенности поверхности в зависимости удаленности ее от светильника. При удалении от светильника освещенность снижается обратно пропорционально квадрату расстояния от светильника.
Угол излучения ° (градус) Зависит от конструкции Стандартный угол излучения для светодиодных светильников составляет 120°
Световое пятно м×м Зависит от конструкции Размеры площади поверхности, которую может осветить светильник в зависимости от расстояния до нее
Коэффициент мощности φ (косинус фи) 0,5-0,95 Зависит от схемы драйвера, чем величина больше, тем качественней драйвер. В качественных светильниках φ>0,95
Цветовая температура К (градусы Кельвина) 3000-6000 Характеризует оттенок белого света. Уличные светильники обычно выбирают с цветовой температурой 4000К или 5000К
Индекс цветопередачи (CRI) Ra 0-100 Индекс цветопередачи характеризует изменение цвета предметов, освещенных светодиодным светильником от натурального. Для качественной цветопередачи величина CRI должна быть не менее 80.
Коэффициент пульсации светового потока Кп,% 0-20 Зависит от схемы драйвера, чем меньше в постоянном токе пульсаций, тем качественней драйвер. В качественных светильниках Кп<5%
Срок службы тыс. часов 50-100 Со временем происходит деградация кристаллов светодиодов и световой поток светильника уменьшается. При снижении светового потока светильника более чем на 50%, он считается неисправным
Встроенный датчик движения - - Позволяет экономить электроэнергию благодаря включению светильника только во время появления в зоне его освещения движущихся объектов
Встроенный датчик освещенности - - Обеспечивает автоматическое включение светильника при наступлении темноты
Встроенный датчик шума - - Обеспечивает автоматическое включение светильника при превышении заданного уровня акустического шума
Габаритные размеры мм×мм×мм Зависят от мощности С увеличением мощности светильника его габаритные размеры увеличиваются
Вес кг Зависит от мощности С увеличением мощности светильника его вес увеличивается

Производители в документации на светодиодные светильники приводит не все перечисленные в таблице технические характеристики, хотя перечень не является полным. Это обычно связано с желанием скрыть истинный уровень качества уличного светильника. Чем больше приведено параметров в паспорте или техническом описании светильника, тем с большей уверенностью можно утверждать, что он высокого качества.

Формула и онлайн калькулятор для расчета параметров

При подборе уличного светодиодного светильника нужно, исходя из требуемой освещенности поверхности, которая измеряется в люксах , определить величину светового потока светильника, который измеряется в люменах . И на этом этапе выбора светильника обычно возникают трудности, так как не все представляют, как зависят друг от друга эти физические величины.

Световой поток обозначается латинской буквой Ф , выражается в люменах и определяет величину световой мощности, которую излучает источник света, в уличном светильнике это лампа, светодиод или светодиодная матрица.

Освещенность поверхности , обозначается латинской буквой Е , измеряется в люксах и пропорционально зависит от величины светового потока Ф . Чем больше у любого светильника мощность светового потока, тем ярче он будет светить.


Освещенность на равноудаленной от источника света поверхности площадью 1 м 2 величиной 1 люкс создается в случае падения на нее светового потока величиной 1 люмен. При удалении светильника от освещаемой поверхности ее освещенность снижается, обратно пропорционально квадрату расстояния. Например, освещенность поверхности на расстоянии одного метра от светильника составляет 900 люкс. Если приподнять светильник на высоту 2 метра, то освещенность поверхности уменьшится в 4 раза, а если на 3 метра, то уже уменьшиться в 9 раз и составит всего 100 люкс.

Таким образом, чтобы определить световой поток светильника, необходимо требуемый уровень освещенности поверхности умножить на ее площадь, получается следующая формула: Ф=Е ×S .

Где: Ф лм ; Е лк ; S – площадь освещаемой поверхности, измеряется в квадратных метрах, обозначается м 2 ;

Зная вышеприведенные законы и школьный курс геометрии не сложно составить полную формулу для оценки требуемой мощности светового потока светильника исходя из необходимой освещенности поверхности, высоты его подвеса и угла светового потока.


где: Ф – световой поток, измеряется в люменах, обозначается лм ; Е – освещенность поверхности, измеряется в люксах, обозначается лк ; π – число Пи, равно 3,14; h – расстояние от светильника до освещаемой поверхности, измеряется в метрах, обозначается м ; а – угол излучения светового потока светильника, измеряется в градусах, обозначается ° ;

Рассчитывать световой поток удобно с помощью онлайн калькулятора, который производит вычисления в соответствии с представленной выше формулой.

В формулу я не стал вводить коэффициенты, учитывающие неравномерность освещения, отражающую способность освещаемой поверхности территории и объектов, расположенных на ней, снижения мощности светового потока светильника со временем, так как узнать их точные значения невозможно.

Пример расчета параметров

Как известно, чем лучше освещена территория в темное время суток, тем комфортнее человеку. Поэтому для учета всех возможных потерь мощности светового потока, в том числе и уменьшения со временем яркости источника излучения светильника (производители считают, что светильник выработал свой ресурс, когда мощность светового потока снизилась на 50% от первоначальной), рекомендую увеличить выбранную освещенность территории как минимум в три раза .

Например, имеется территория перед крыльцом загородного дачного домика или гаражом площадью 10 м 2 Из личного опыта утверждаю, что для комфортной освещенности площадки двора необходим светильник, обеспечивающий освещенность не менее 10 лк, хотя по требованиям СНиП 23-05-2010 достаточно и 2 лк. С учетом вышеперечисленных факторов, влияющих на освещенность, вместо 10 люкс в онлайн калькуляторе прописываем 30. Удобное место на стене дачного домика находится на высоте 4 м.

Подставим данные в соответствующие окошки онлайн калькулятора. Получаем, что для отличного освещения площадки необходим светильник с углом излучения 120° обеспечивающий световой поток 1508 лм. При этом площадь территории будет освещена с большим запасом - 50 м 2 .

Если такой размер площади является излишним, то можно уменьшить угол излучения уличного светильника, например до 80°. В таком случае потребуется светильник со световым потоком 470 лм и площадь составит 23,5 м 2 .

Если есть возможность, то можно подобрать высоту подвеса светильника. Например, подвесить светильник на высоте 2 м. Тогда освещаемая площадь составит 12,6 м 2 , а мощности светового потока будет достаточно 337 лм. Чем меньше мощность светового потока светильника, тем меньше он будет потреблять электроэнергии. Это особенно актуально при продолжительном времени работы уличного светильника или прожектора.

В среднем, согласно данным приведенной ниже таблицы, светодиодные светильники излучают световой поток 100 люмен на один ватт потребляемой мощности (100 лм/Вт), поэтому несложно по величине излучения светового потока светильником оценить, какой мощности он потребуется. Для этого нужно величину рассчитанного светового потока поделить на 100. Для последнего примера получится: 377 лм: 100 лм/Вт=3,7 Вт. Для более точного расчета нужно воспользоваться техническими характеристиками выбранной модели светильника.

Таблица световых потоков и отдачи популярных источников света
Тип источника света Световой поток, лм Световая отдача, лм/Вт
Лампа накаливания 25 Вт 220 9
Лампа накаливания 100 Вт 1340 13
Лампа накаливания 200 Вт 3040 15
Галогенная лампа накаливания 220 В, 55 Вт 900 16
IRC-галогенная лампа накаливания 12 В 1700 26
Люминесцентная лампа 36 Вт 2850-3350 71-84
Люминесцентная лампа 215 Вт 17500 81
Металлогалогенная газоразрядная лампа 250 Вт 20100 80
Металлогалогенная газоразрядная лампа 400 Вт 35000-42000 88-105
Металлогалогенная газоразрядная лампа 2000 Вт 17500 81
Дуговая ртутная лампа (ДРЛ) 400 Вт 24000 50-60
Индукционная лампа 40 Вт 2800 90
Газоразрядная лампа (автомобильный ксенон) 35 Вт 3000-3400 93
Светодиодная лампа 2700K, 6 Вт 400 67
Светодиодная лампа 2700K, 13 Вт 1000 77
Светодиодная лампа 4500K, 10 Вт 935 94
Светодиод Luminus CSM-360 80 Вт 6000 115
Светодиод Cree XLamp XHP70 32 Вт 4022 150
Солнце 3,63×10 28 93

С учетом того, что в расчете заложен достаточный запас по освещенности поверхности, то для полноценного освещения территории площадью 10 м 2 перед крыльцом загородного дома можно смело покупать любой уличный светодиодный светильник с мощностью потребления 4 Вт при условии, что он будет подвешен на высоте 2 м и иметь угол излучения светового потока 80°.

Если в результате расчета мощность светильника получилась большой, то целесообразно установить несколько светильников меньшей мощности, суммарная мощность которых должна быть не менее расчетной. Таким образом, будет достигнуто более равномерное освещение поверхности и в случае поломки одного из светильников территория все равно будет освещена.

Прожектором называется светильник, который светит направленно и ярко. Такой излучатель наиболее часто востребован там, где освещаемый объект существенно удален, но вместе с этим должен быть хорошо виден в тёмное время суток. Наиболее характерным примером может быть освещение прибрежных морских приграничных территорий. Такие же прожекторы применяются и при контроле сухопутных границ. Они создают яркий луч света, видимый в темноте на несколько километров. Похожие системы широко применялись в военное время для освещения воздушных целей.

Чтобы получить яркий луч света необходимо правильное сочетание двух деталей:

  • мощного точечного излучателя света;
  • достаточно большого и качественного отражателя.

Свет наилучшей направленности обеспечивает параболическое зеркало. Для параболы характерна точка, которая называется «фокус». Все лучи исходящие из этой точки после отражения становятся параллельными. От качества отражателя зависит количество поглощённого света и параллельность, а соответственно и дальность лучей в пучке света. Наилучший результат получается при использовании точечного излучателя света, который размещён в фокусе параболоида вращения.

Так устроены пограничные прожекторы, автомобильные фары и прочие излучатели дальнего действия. В пограничных устройствах применяется высококачественный отражатель диаметром два метра и более и вольтова дуга, которая наиболее близка к точечному излучателю по своим размерам и яркости. В автомобильных фарах также применяется высококачественный отражатель, который сочетается почти точечным излучателем в виде спирали лампы накаливания .

Для дальнего света используется одна спираль, расположенная точно в фокусе отражателя. Другая спираль для ближнего света смещена относительно фокуса и создаёт более рассеянный свет (показано на изображении слева).

При выборе прожектора дальнего действия рекомендуется сравнивать его с рассмотренными выше конструкциями прожекторов (пограничный прожектор и автомобильная фара). Если его экономичность не является обязательным условием, наилучшим излучателем будет лампа ДРШ (дуговая ртутная шаровая). С такой ламой получится наилучший прожектор для домашнего проектора (показан на изображении далее):


  • Надо применять дополнительное стекло в прожекторе с лампой ДРШ для уменьшения ультрафиолетового излучения.

Близкий по дальности света прожектор получится с ксеноновой или галогенной лампой . Их главным преимуществом будет хорошая цветопередача. У лампы ДРШ цветопередача искажена подчёркиванием синего цвета. Остальные источники для дальнего света хуже. Светодиодные матрицы и излучатели света в газоразрядных лампах других конструкций существенно меньше походят на точечные источники света и менее яркие. В комбинации с отражателями они не могут создавать луч света, который соответствует острому телесному углу.

Такие светильники могут давать много направленного света, но в пределах телесного угла более 90 градусов. Их правильнее называть не прожекторами, а софитами. Они широко используются на улицах и в помещениях. Поскольку главную роль в этих софитах играет источник света, его следует выбирать применительно к предназначению софита. Для наилучшего сочетания яркости, экономичности и цветопередачи больше всего подходят светодиодные, ксеноновые и галогенные лампы.

Если нужен экономичный прожектор с регулируемым телесным углом пучка света, надо применять в нём светодиодные лампы специальной конструкции. Основная доля света этих излучателей направлена в сторону отражателя. Перемещение отражателя относительно лампы будет менять величину телесного угла пучка света. Примеры таких излучателей показаны далее.


В помещениях и на улице при отсутствии значений температуры за пределами + 35 градусов по Цельсию светодиодные софиты также получаются наиболее экономичными и яркими. Но для наружных светильников существенное значение имеет герметичность конструкции применительно к появлению конденсата. Если он будет появляться, а затем замерзать, светодиодный софит утратит свою яркость. Софиты с натриевыми лампами и ДРЛ самые нечувствительные к температурам окружающей среды. Они всегда сильно нагреваются.

Если часто бывают туманы светильники с натриевыми лампами наиболее предпочтительны. В помещениях с температурами выше нуля градусов по Цельсию преимущества светодиодов неоспоримы. Энергосберегающие лампы не обеспечат такой же яркости при одинаковой потребляемой мощности. Потому, несмотря на более высокую цену и благодаря последующей окупаемости для большинства случаев рекомендуются к использованию