Вычисление определенного интеграла методом трапеций онлайн. Пример вычисления определенного интеграла методом трапеций

  • Дата: 27.01.2021

Упражнения.

5.1 Вычислить по квадратурной формуле прямоугольников при n = 3 интеграл и сравнить с точным значением интеграла:

а) , I = 1; б) , I = ln 2;

в) , I = ; г) , I = 0,75.

5.2 Вычислить по квадратурной формуле прямоугольников при n = 5 интеграл и оценить погрешность интегрирования:

5.3 Определить число узлов n , которое нужно использовать для вычисления интеграла с помощью формулы прямоугольников с точностью до 0,01:

а) ; б) ; в) ; г) .

5.4 Вычислить по квадратурной формуле прямоугольников интеграл с точностью до 0,01:

Рассмотрим определенный интеграл I (6) и изобразим график подынтегральной функции (рис. 17). Разобьем отрезок интегрирования на n равных отрезков точками , где (рис. 17).

Рисунок 17
f(х 1)
f(х 2)
f(х i )
f(х n -1)
f(х n )
f(х 0)
f(х i - 1)
f(х n- 2)
x 0
x 1
x 2
x i- 1
x i
x n-1
x n
x n- 2
а
b
х
у
О

Длина каждого отрезка разбиения . При этом очевидно, что для точек разбиения будет справедливо соотношение:

причем x 0 = a и x n = b .

Соединим отрезками точки графика функции с координатами . В результате получим ломанную, которая является графиком кусочно-линейной функции (рис. 17). На каждом из отрезков разбиения функция задается формулой

В точках она принимает те же значения, что и функция :

т.е. функция осуществляет кусочно-линейную интерполяцию функции на отрезке (рис 17).

Вычислим интеграл:

Этот результат имеет простой геометрический смысл: фигура, ограниченная снизу отрезком оси Ох , сверху отрезком функции (13), с боков вертикальными прямыми и , представляет собой трапецию с основаниями длины и и высотой h , площадь которой определяется формулой (14) (рис. 17).

Интеграл от функции по всему отрезку является суммой интегралов (14):

Квадратурная формула

дает приближенное значение интеграла I :

где – остаточный член (специальное обозначение). В квадратурной формуле (16), которая называется квадратурной формулой трапеций , узлами являются точки , весовые множители все, кроме двух при и , одинаковы и равны , а весовые коэффициенты при и равны . С точностью до формула (16) выражает площадь криволинейной трапеции, соответствующую интегралу I , через сумму площадей трапеций (14) (рис. 17).

Формула (7) или (7ʹ) для величины строилась как интегральная сумма. При выводе формулы (15) для понятие интегральной суммы не использовалось, но ее так же можно рассматривать как интегральную сумму. Следовательно, если функция интегрируема на , то в силу определения определенного интеграла



т.е. условия сходимости квадратурной формулы трапеций (16) в этом случае выполняются.

Предельные соотношения (17) доказывают принципиальную возможность вычисления определенного интеграла от произвольной интегрируемой функции методом трапеции с любой точностью ε за счет выбора числа n точек разбиения отрезка и соответствующего шага h .

Рассмотрим основной вопрос, связанный с организацией реального вычислительного процесса: каким нужно взять n , чтобы добиться при вычислении определенного интеграла (6) требуемой точности ε . Для этого необходимо провести оценку остаточного члена (погрешности) . В связи с этим подынтегральная функция должна быть не только интегрируема, но и дважды непрерывно дифференцируема на отрезке . Если выполняются все описанные выше условия, то для остаточного члена имеет место следующая оценка

где М – положительное число удовлетворяющее условию (11).

При заданной точности ε условие (18) позволяет определить число узлов n , которое нужно использовать при вычислении определенного интеграла (6). Для этого достаточно использовать соотношение

Пример 1. Вычислить по квадратурной формуле трапеций при n = 3 интеграл

Сравнить с точным значением интеграла.

Решение.

Так как n = 3, то шаг

И учитывая, что и :

Значит по формуле (15) имеем

Следовательно, .

Сравним полученное приближенное значение с точным значением интеграла

Ответ: , .

Пример 2. Определить число узлов n , которое нужно использовать для вычисления интеграла с помощью формулу трапеций

с точностью до 0,01.

Решение.

Для определения n , воспользуемся соотношение (19)

По условию задачи и ε = 0,01. Учитывая, что подынтегральная функция и ее первая и вторая производные соответственно равны и , то на отрезке интегрирования справедливо = . Значит М = 1. В результате получим соотношение

Из которого определим n :

а , то возьмем n = 6.

Следовательно, чтобы достичь точности ε = 0,01, необходимо взять 7 узлов.

Ответ: n = 6.

Пример 3. Вычислить по квадратурной формуле трапеций интеграл

с точностью до 0,01.

Решение.

Определим сначала число узлов n , которое необходимо использовать для вычисления интеграла. По условию задачи , ε = 0,01 и . Так как

и для выполняется

то М = 2. Подставляя значения a , b , ε и М в формулу (12) получим соотношение:

Из которого найдем n .

а , то возьмем n = 5.

Так как n = 5, то шаг

Найдем значения , используя соотношение

И учитывая, что , а b :

Теперь вычислим значения подынтегральной функции в точках , :

Значит по формуле (15) имеем

Следовательно, .

Ответ: с точностью до 0,01.

Вычисление интегралов по формулам прямоугольников, трапеций и формуле Симпсона. Оценка погрешностей.

Методические указания по теме 4.1:

Вычисление интегралов по формулам прямоугольников. Оценка погрешности:

Решение многих технических задач сводится к вычислению определенных интегралов, точное выражение которых сложно, требует длительных вычислений и не всегда оправдано практически. Здесь бывает вполне достаточно их приближенного значения. Например, необходимо вычислить площадь, ограниченную линией, уравнение которой неизвестно, осью х и двумя ординатами. В этом случае можно заменить данную линию более простой, для которой известно уравнение. Площадь полученной таким образом криволинейной трапеции принимается за приближенное значение искомого интеграла. Геометрически идея способа вычислений определенного интеграла по формуле прямоугольников состоит в том, что площадь криволинейной трапеции А 1 АВВ 1 заменяется площадью равновеликого прямоугольника А 1 А 2 В 1 В 2 , которая по теореме о среднем равна

Где f(c) --- высота прямоугольника А 1 А 2 В 1 В 2 , представляющая собой значение подынтегральной функции в некоторой промежуточной точке c(a< c

Практически трудно найти такое значение с , при котором (b-a) f (c) в точности равнялось бы . Для получения более точного значения площадь криволинейной трапеции разбивают на n прямоугольников, высоты которых равны y 0 , y 1 , y 2 , …,y n -1 и основания .

Если суммировать площади прямоугольников, которые покрывают площадь криволинейной трапеции с недостатком, функция --- неубывающая, то вместо формулы используют формулу

Если с избытком, то

Значения находят из равенств . Эти формулы называются формулами прямоугольников и дают приближенный результат. С увеличением n результат становится более точным.

Пример 1. Вычислить по формуле прямоугольников

Разделим промежуток интегрирования на 5 частей. Тогда . При помощи калькулятора или таблицы найдем значения подынтегральной функции (с точностью до 4-х знаков после запятой):

По формуле прямоугольников (с недостатком)

С другой стороны по формуле Ньютона-Лейбница

Найдем относительную погрешность вычисления по формуле прямоугольников:

Вычисление интегралов по формулам трапеций. Оценка погрешности:

Геометрический смысл следующего способа приближенного вычисления интегралов состоит в том, что нахождение площади приблизительно равновеликой «прямолинейной» трапеции.

Пусть необходимо вычислить площадь А 1 АmBB 1 криволинейной трапеции, выражаемую формулой .

Заменим дугу AmB хордой AB и вместо площади криволинейной трапеции А 1 АmBB 1 вычислим площадь трапеции А 1 АBB 1 : , где AA 1 и ВВ 1 -- основания трапеции, а A 1 В 1 –ее высота.


Обозначим f(a)=A 1 A,f(b)=B 1 B. высота трапеции A 1 B 1 =b-a, площадь . Следовательно, или

Это так называемая малая формула трапеций .

Пример 2. Ширина реки 26 м , промеры глубины в поперечном сечении реки через каждые 2 м дали, следующие результаты.

Сначала формула в общем виде. Возможно, она будет не всем и не сразу понятна… да Карлссон с вами – практические примеры всё прояснят! Спокойствие. Только спокойствие.

Рассмотрим определенный интеграл , где – функция, непрерывная на отрезке . Проведём разбиение отрезка на равных отрезков:
. При этом, очевидно: (нижний предел интегрирования) и (верхний предел интегрирования). Точки также называют узлами .

Тогда определенный интеграл можно вычислить приближенно по формуле трапеций :
, где:
– длина каждого из маленьких отрезков или шаг ;
– значения подынтегральной функции в точках .

Пример 1

Вычислить приближенно определенный интеграл по формуле трапеций. Результаты округлить до трёх знаков после запятой.

а) Разбив отрезок интегрирования на 3 части.
б) Разбив отрезок интегрирования на 5 частей.

Решение:
а) Специально для чайников я привязал первый пункт к чертежу, который наглядно демонстрировал принцип метода. Если будет трудно, посматривайте на чертёж по ходу комментариев, вот его кусок:

По условию отрезок интегрирования нужно разделить на 3 части, то есть .
Вычислим длину каждого отрезка разбиения: . Параметр , напоминаю, также называется шагом .

Сколько будет точек (узлов разбиения)? Их будет на одну больше , чем количество отрезков:

Таким образом, общая формула трапеций сокращается до приятных размеров:

Для расчетов можно использовать обычный микрокалькулятор:

Обратите внимание, что, в соответствии с условием задачи, все вычисления следует округлять до 3-его знака после запятой .

Окончательно:

Напоминаю, что полученное значение – это приближенное значение площади (см. рисунок выше).

б) Разобьём отрезок интегрирования на 5 равных частей, то есть . Зачем это нужно? Чтобы Фобос-Грунт не падал в океан – увеличивая количество отрезков, мы увеличиваем точность вычислений.

Если , то формула трапеций принимает следующий вид:

Найдем шаг разбиения:
, то есть, длина каждого промежуточного отрезка равна 0,6.

При чистовом оформлении задачи все вычисления удобно оформлять расчетной таблицей:

В первой строке записываем «счётчик»

Как формируется вторая строка, думаю, всем видно – сначала записываем нижний предел интегрирования , остальные значения получаем, последовательно приплюсовывая шаг .

По какому принципу заполняется нижняя строка, тоже, думаю, практически все поняли. Например, если , то . Что называется, считай, не ленись.

В результате:

Ну что же, уточнение, и серьёзное, действительно есть!
Если для 3-х отрезков разбиения , то для 5-ти отрезков . Таким образом, с большой долей уверенности можно утверждать, что, по крайне мере .

Пример 2

Вычислить приближенно определенный интеграл по формуле трапеций с точностью до двух знаков после запятой (до 0,01).

Решение: Почти та же задача, но немного в другой формулировке. Принципиальное отличие от Примера 1 состоит в том, что мы не знаем , НА СКОЛЬКО отрезков разбивать отрезок интегрирования, чтобы получить два верных знака после запятой. Иными словами, мы не знаем значение .

Существует специальная формула, позволяющая определить количество отрезков разбиения, чтобы гарантированно достигнуть требуемой точности, но практике она часто трудноприменима. Поэтому выгодно использовать упрощенный подход.

Сначала отрезок интегрирования разбивается на несколько больших отрезков, как правило, на 2-3-4-5. Разобьем отрезок интегрирования, например, на те же 5 частей. Формула уже знакома:

И шаг, естественно, тоже известен:

Но возникает еще один вопрос, до какого разряда округлять результаты ? В условии же ничего не сказано о том, сколько оставлять знаков после запятой. Общая рекомендация такова: к требуемой точности нужно прибавить 2-3 разряда . В данном случае необходимая точность 0,01. Согласно рекомендации, после запятой для верности оставим пять знаков (можно было и четыре):

В результате:

После первичного результата количество отрезков удваивают . В данном случае необходимо провести разбиение на 10 отрезков. И когда количество отрезков растёт, то в голову приходит светлая мысль, что тыкать пальцами в микрокалькулятор уже как-то надоело. Поэтому еще раз предлагаю закачать и использовать мой калькулятор-полуавтомат (ссылка в начале урока).

Для формула трапеций приобретает следующий вид:

В бумажной версии запись можно спокойно перенести на следующую строчку.

Вычислим шаг разбиения:

Результаты расчётов сведём в таблицу:


При чистовом оформлении в тетрадь длинную таблицу выгодно превратить в двухэтажную.

Учебно-воспитательные задачи:

  • Дидактическая цель. Познакомить учащихся с методами приближённого вычисления определённого интеграла.
  • Воспитательная цель. Тема данного занятия имеет большое практическое и воспитательное значение. Наиболее просто к идее численного интегрирования можно подойти, опираясь на определение определённого интеграла как предела интегральных сумм. Например, если взять какое-либо достаточно мелкое разбиение отрезка [a ; b ] и построить для него интегральную сумму, то её значение можно приближённо принять за значение соответствующего интеграла. При этом важно быстро и правильно производить вычисления с привлечением вычислительной техники.

Основные знания и умения. Иметь понятие о приближённых методах вычисления определённого интеграла по формулам прямоугольников и трапеций.

Обеспечение занятия

  • Раздаточный материал. Карточки-задания для самостоятельной работы.
  • ТСО. Мультипроектор, ПК, ноутбуки.
  • Оснащение ТСО. Презентации: “Геометрический смысл производной”, “Метод прямоугольников”, “Метод трапеций”. (Презентации можно взять у автора).
  • Вычислительные средства: ПК, микрокалькуляторы.
  • Методические рекомендации

Вид занятия. Интегрированное практическое.

Мотивация познавательной деятельности учащихся. Очень часто приходится вычислять определённые интегралы, для которых невозможно найти первообразную. В этом случае применяют приближённые методы вычисления определённых интегралов. Иногда приближённый метод применяют и для “берущихся” интегралов, если вычисление по формуле Ньютона-Лейбница не рационально. Идея приближённого вычисления интеграла заключается в том, что кривая заменяется новой, достаточно “близкой” к ней кривой. В зависимости от выбора новой кривой можно использовать ту или иную приближённую формулу интегрирования.

Последовательность занятия.

  1. Формула прямоугольников.
  2. Формула трапеций.
  3. Решение упражнений.

План занятия

  1. Повторение опорных знаний учащихся.

Повторить с учащимися: основные формулы интегрирования, сущность изученных методов интегрирования, геометрический смысл определённого интеграла.

  1. Выполнение практической работы.

Решение многих технических задач сводится к вычислению определённых интегралов, точное выражение которых сложно, требует длительных вычислений и не всегда оправдано практически. Здесь бывает вполне достаточно их приближённого значения.

Пусть, например, необходимо вычислить площадь, ограниченную линией, уравнение которой неизвестно. В этом случае можно заменить данную линию более простой, уравнение которой известно. Площадь полученной таким образом криволинейной трапеции принимается за приближённое значение искомого интеграла.

Простейшим приближённым методом является метод прямоугольников. Геометрически идея способа вычисления определённого интеграла по формуле прямоугольников состоит в том, что площадь криволинейной трапеции АВСD заменяется суммой площадей прямоугольников, одна сторона которых равна , а друга - .

Если суммировать площади прямоугольников, которые показывают площадь криволинейной трапеции с недостатком [Рисунок1], то получим формулу:

[Рисунок1]

то получим формулу:

Если с избытком

[Рисунок2],

то

Значения у 0 , у 1 ,..., у n находят из равенств , к = 0, 1..., n .Эти формулы называются формулами прямоугольников и дают приближённый результат. С увеличением n результат становится более точным.

Итак, чтобы найти приближённое значение интеграла , нужно:

Для того, чтобы найти погрешность вычислений, надо воспользоваться формулами:


Пример 1. Вычислить по формуле прямоугольников . Найти абсолютную и относительную погрешности вычислений.

Разобьём отрезок [a, b ] на несколько (например, на 6) равных частей. Тогда а = 0, b = 3 ,

х k = a + k х
х
0 = 2 + 0 = 2
х 1 = 2 + 1 = 2,5
х 2 = 2 + 2 =3
х 3 = 2 + 3 = 3
х 4 = 2 + 4 = 4
х 5 = 2 + 5 = 4,5

f (x 0) = 2 2 = 4
f (x 1) = 2 ,5 2 = 6,25
f (x 2) = 3 2 = 9
f (x 3) = 3,5 2 = 12,25
f (x 4) = 4 2 = 16
f (x 5) = 4,5 2 = 20,25.

х 2 2,5 3 3,5 4 4,5
у 4 6,25 9 12,25 16 20,25

По формуле (1):

Для того, чтобы вычислить относительную погрешность вычислений, надо найти точное значение интеграла:



Вычисления проходили долго и мы получили довольно-таки грубое округление. Чтобы вычислить этот интеграл с меньшим приближением, можно воспользоваться техническими возможностями компьютера.

Для нахождения определённого интеграла методом прямоугольников необходимо ввести значения подынтегральной функции f(x) в рабочую таблицу Excel в диапазоне х с заданным шагом х = 0,1.

  1. Составляем таблицу данных и f(x)). х f(x). Аргумент , а в ячейку В1 – слово Функция 2 2,1 ). Затем, выделив блок ячеек А2:А3, автозаполнением получаем все значения аргумента (за правый нижний угол блока протягиваем до ячейки А32, до значения х=5 ).
  2. Далее вводим значения подынтегральной функции. В ячейку В2 необходимо записать её уравнение. Для этого табличный курсор необходимо установить в ячейку В2 и с клавиатуры ввести формулу =А2^2 (при английской раскладке клавиатуры). Нажимаем клавишу Enter . В ячейке В2 появляется 4 . Теперь необходимо скопировать функцию из ячейки В2. Автозаполнением копируем эту формулу в диапазон В2:В32.
    В результате должна быть получена таблица данных для нахождения интеграла.
  3. Теперь в ячейке В33 может быть найдено приближённое значение интеграла. Для этого в ячейку В33 вводим формулу = 0,1*, затем вызываем Мастер функций (нажатием на панели инструментов кнопки Вставка функции (f(x)) . В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция - функцию Сумм. Нажимаем кнопку ОК. Появляется диалоговое окно Сумм. В рабочее поле мышью вводим диапазон суммирования В2:В31. Нажимаем кнопку ОК. В ячейке В33 появляется приближённое значение искомого интеграла с недостатком (37,955 ) .

Сравнивая полученное приближённое значение с истинным значением интеграла (39 ), можно видеть, что ошибка приближения метода прямоугольников в данном случае равна

= |39 - 37 , 955| = 1 ,045

Пример 2. Используя метод прямоугольников, вычислить с заданным шагом х = 0,05.

Сравнивая полученное приближённое значение с истинным значением интеграла , можно видеть, что ошибка приближения метода прямоугольников в данном случае равна

Метод трапеций обычно даёт более точное значение интеграла, чем метод прямоугольников. Криволинейная трапеция заменяется на сумму нескольких трапеций и приближённое значение определённого интеграла находится как сумма площадей трапеций

[Рисунок3]

Пример 3. Методом трапеций найти с шагом х = 0,1.

  1. Открываем чистый рабочий лист.
  2. Составляем таблицу данных и f(x)). Пусть первый столбец будет значениями х , а второй соответствующими показателями f(x). Для этого в ячейку А1 вводим слово Аргумент , а в ячейку В1 – слово Функция . В ячейку А2 вводится первое значение аргумента – левая граница диапазона (0 ). В ячейку А3 вводится второе значение аргумента – левая граница диапазона плюс шаг построения (0,1 ). Затем, выделив блок ячеек А2:А3, автозаполнением получаем все значения аргумента (за правый нижний угол блока протягиваем до ячейки А33, до значения х=3,1 ).
  3. Далее вводим значения подынтегральной функции. В ячейку В2 необходимо записать её уравнение (в примере синуса). Для этого табличный курсор необходимо установить в ячейку В2. Здесь должно оказаться значение синуса, соответствующее значению аргумента в ячейке А2. Для получения значения синуса воспользуемся специальной функцией: нажимаем на панели инструментов кнопку Вставка функции f(x) . В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция - функцию SIN . Нажимаем кнопку ОК. Появляется диалоговое окно SIN . Наведя указатель мыши на серое поле окна, при нажатой левой кнопке сдвигаем поле вправо, чтобы открыть столбец данных (А ). Указываем значение аргумента синуса щелчком мыши на ячейке А2. Нажимаем кнопку ОК. В ячейке В2 появляется 0. Теперь необходимо скопировать функцию из ячейки В2. Автозаполнением копируем эту формулу в диапазон В2:В33. В результате должна быть получена таблица данных для нахождения интеграла.
  4. Теперь в ячейке В34 может быть найдено приближённое значение интеграла по методу трапеций. Для этого в ячейку В34 вводим формулу = 0,1*((В2+В33)/2+, затем вызываем Мастер функций (нажатием на панели инструментов кнопки Вставка функции (f(x)) . В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция - функцию Сумм. Нажимаем кнопку ОК. Появляется диалоговое окно Сумм. В рабочее поле мышью вводим диапазон суммирования В3:В32. Нажимаем кнопку ОК и ещё раз ОК. В ячейке В34 появляется приближённое значение искомого интеграла с недостатком (1,997 ) .

Сравнивая полученное приближённое значение с истинным значением интеграла можно видеть, что ошибка приближения метода прямоугольников в данном случае вполне приемлемая для практики.

  1. Решение упражнений.